D A T A

API Documentation

Integrate DataBrain's powerful RAG capabilities into your applications

Overview

DataBrain provides a RESTful API that allows developers to harness the power of Retrieval-Augmented Generation (RAG) technology. With our API, you can upload documents, create knowledge bases, and generate highly accurate, contextually relevant responses based on your data.

Our API is organized around REST principles. All requests should be made to the base URL https://api.databrain.ai/rag, using HTTPS, and will return JSON-encoded responses with standard HTTP response codes.

Upload Icon
Document Management

Upload and manage your documents that will serve as sources for the RAG system.

Query Icon
Query Capabilities

Retrieve information from your documents using natural language queries.

Security Icon
Secure & Scalable

Enterprise-grade security with token-based authentication and scalable infrastructure.

Authentication

DataBrain API uses token-based authentication. You'll need to include your API token in the Authorization header for all requests.

Authorization Header
Authorization: Bearer YOUR_API_TOKEN

You can obtain your API token from the DataBrain Dashboard under API Settings. Keep your token secure and don't share it in publicly accessible areas such as GitHub or client-side code.

All API requests must be made over HTTPS. Calls made over plain HTTP will fail.

Document Management

DataBrain supports various document types including PDF, TXT, DOCX, MP3, and CSV files. Documents are processed and chunked automatically for optimal retrieval.

Upload Document
POST

Upload and process a document to be used as a knowledge source for RAG queries.

Endpoint
https://ai.goodbits.tech/api/rag/documents/upload
Parameters
Parameter Type Required Description
document File Yes The document file to upload (PDF, TXT, CSV, DOCX, MP3)
Response (201 Created)
{
    "message": "Document processed successfully",
    "document_id": "123e4567-e89b-12d3-a456-426614174000",
    "name": "example.pdf",
    "type": "pdf",
    "chunks": 15
}
List Documents
GET

Retrieve a list of all documents uploaded by the current user.

Endpoint
https://ai.goodbits.tech/api/rag/documents
Parameters

No parameters required.

Response (200 OK)
{
    "documents": [
        {
            "id": "123e4567-e89b-12d3-a456-426614174000",
            "name": "example1.pdf",
            "type": "pdf",
            "created_at": "2023-06-01T15:30:45Z"
        },
        {
            "id": "123e4567-e89b-12d3-a456-426614174001",
            "name": "example2.txt",
            "type": "txt",
            "created_at": "2023-06-02T10:15:30Z"
        }
    ]
}

Documents List API

Retrieve detailed information about your documents with advanced filtering, pagination, and statistics. This API provides comprehensive management capabilities for all documents in your account.

List All Documents
GET

Retrieve a paginated list of all documents with optional filtering and sorting capabilities.

Endpoint
https://ai.goodbits.tech/api/documents
Query Parameters
Parameter Type Required Description
per_page Integer No Number of items per page (default: 15, max: 100)
search String No Search by document name
type String No Filter by document type (pdf, txt, docx, csv, etc)
batch_id UUID No Filter by batch ID
status String No Filter by processing status (queued, processing, completed, failed)
sort_by String No Field to sort by (created_at, name, type) - default: created_at
sort_order String No Sort order (asc, desc) - default: desc
Example Request
GET https://ai.goodbits.tech/api/documents?per_page=20&search=contract&type=pdf&sort_by=name&sort_order=asc
Response (200 OK)
{
    "success": true,
    "data": [
        {
            "id": "9c8e7f6d-5a4b-3c2d-1e0f-123456789abc",
            "name": "Contract 2024.pdf",
            "type": "pdf",
            "file_path": "documents/abc123.pdf",
            "batch_id": "9c8e7f6d-5a4b-3c2d-1e0f-987654321xyz",
            "batch_name": "Upload Batch 1",
            "batch_status": "completed",
            "processing_order": 1,
            "processing_status": "completed",
            "chunks_count": 25,
            "vector_ids_count": 25,
            "size": 2048576,
            "mime_type": "application/pdf",
            "created_at": "2025-10-09 10:30:00",
            "updated_at": "2025-10-09 10:35:00",
            "deleted_at": null
        },
        {
            "id": "9c8e7f6d-5a4b-3c2d-1e0f-123456789def",
            "name": "Contract Amendment.pdf",
            "type": "pdf",
            "file_path": "documents/def456.pdf",
            "batch_id": "9c8e7f6d-5a4b-3c2d-1e0f-987654321xyz",
            "batch_name": "Upload Batch 1",
            "batch_status": "completed",
            "processing_order": 2,
            "processing_status": "completed",
            "chunks_count": 12,
            "vector_ids_count": 12,
            "size": 1024000,
            "mime_type": "application/pdf",
            "created_at": "2025-10-09 10:32:00",
            "updated_at": "2025-10-09 10:37:00",
            "deleted_at": null
        }
    ],
    "pagination": {
        "total": 150,
        "per_page": 20,
        "current_page": 1,
        "last_page": 8,
        "from": 1,
        "to": 20
    }
}
Get Document Details
GET

Retrieve complete details about a specific document including content, metadata, batch information, and vector IDs.

Endpoint
https://ai.goodbits.tech/api/documents/{document_id}
Path Parameters
Parameter Type Required Description
document_id UUID Yes The unique identifier of the document
Response (200 OK)
{
    "success": true,
    "data": {
        "id": "9c8e7f6d-5a4b-3c2d-1e0f-123456789abc",
        "name": "Contract 2024.pdf",
        "type": "pdf",
        "file_path": "documents/abc123.pdf",
        "content": "Full extracted text content from the document...",
        "batch_id": "9c8e7f6d-5a4b-3c2d-1e0f-987654321xyz",
        "batch": {
            "id": "9c8e7f6d-5a4b-3c2d-1e0f-987654321xyz",
            "name": "Upload Batch 1",
            "status": "completed",
            "total_documents": 10,
            "processed_documents": 10,
            "progress": 100
        },
        "processing_order": 1,
        "vector_ids": [
            "vec_9c8e7f6d5a4b3c2d1e0f123456789001",
            "vec_9c8e7f6d5a4b3c2d1e0f123456789002",
            "vec_9c8e7f6d5a4b3c2d1e0f123456789003"
        ],
        "vector_ids_count": 25,
        "metadata": {
            "size": 2048576,
            "mime_type": "application/pdf",
            "processing_status": "completed",
            "chunks_count": 25,
            "processing_started": "2025-10-09 10:30:00",
            "processing_completed": "2025-10-09 10:35:00",
            "original_name": "Contract 2024.pdf"
        },
        "created_at": "2025-10-09 10:30:00",
        "updated_at": "2025-10-09 10:35:00",
        "deleted_at": null
    }
}
Error Response (404 Not Found)
{
    "success": false,
    "message": "Document not found or access denied",
    "error": "No query results for model [App\\Models\\Document]."
}
Documents Statistics
GET

Get comprehensive statistics about your documents including totals, distribution by type and status, and recent activity.

Endpoint
https://ai.goodbits.tech/api/documents/statistics/overview
Response (200 OK)
{
    "success": true,
    "data": {
        "total_documents": 150,
        "total_chunks": 3750,
        "documents_by_type": {
            "pdf": 80,
            "txt": 30,
            "docx": 25,
            "csv": 10,
            "xlsx": 5
        },
        "documents_by_status": {
            "completed": 140,
            "processing": 5,
            "failed": 3,
            "queued": 2
        },
        "total_batches": 15,
        "recent_uploads": 8
    }
}
Statistics Fields
Field Type Description
total_documents Integer Total number of documents in your account
total_chunks Integer Total number of vector chunks across all documents
documents_by_type Object Document count grouped by file type
documents_by_status Object Document count grouped by processing status
total_batches Integer Total number of upload batches
recent_uploads Integer Number of documents uploaded in the last 7 days
List Batches
GET

Retrieve a paginated list of all document batches with their processing status and progress information.

Endpoint
https://ai.goodbits.tech/api/documents/batches/list
Query Parameters
Parameter Type Required Description
per_page Integer No Number of items per page (default: 15, max: 100)
Response (200 OK)
{
    "success": true,
    "data": [
        {
            "id": "9c8e7f6d-5a4b-3c2d-1e0f-987654321xyz",
            "name": "Upload Batch 1",
            "status": "completed",
            "total_documents": 10,
            "processed_documents": 10,
            "failed_documents": 0,
            "progress_percentage": 100,
            "documents_count": 10,
            "metadata": {
                "uploaded_by": "user@email.com",
                "source": "web_interface",
                "description": "Monthly reports upload"
            },
            "created_at": "2025-10-09 10:00:00",
            "updated_at": "2025-10-09 10:45:00"
        },
        {
            "id": "9c8e7f6d-5a4b-3c2d-1e0f-987654321abc",
            "name": "API Upload - 2025-10-08",
            "status": "processing",
            "total_documents": 25,
            "processed_documents": 18,
            "failed_documents": 1,
            "progress_percentage": 72,
            "documents_count": 25,
            "metadata": {
                "uploaded_by": "api_user",
                "source": "api",
                "description": "Automated daily sync"
            },
            "created_at": "2025-10-08 15:30:00",
            "updated_at": "2025-10-08 16:15:00"
        }
    ],
    "pagination": {
        "total": 15,
        "per_page": 15,
        "current_page": 1,
        "last_page": 1
    }
}
Batch Status Values
Status Description
pending Batch created but processing has not started
processing Batch is currently being processed
completed All documents in batch have been processed successfully
failed Batch processing failed
partial Some documents processed successfully, some failed
List Batch Documents
GET

Retrieve all documents that belong to a specific batch, ordered by their processing sequence.

Endpoint
https://ai.goodbits.tech/api/documents/batches/{batch_id}/documents
Path Parameters
Parameter Type Required Description
batch_id UUID Yes The unique identifier of the batch
Query Parameters
Parameter Type Required Description
per_page Integer No Number of items per page (default: 15, max: 100)
Response (200 OK)
{
    "success": true,
    "batch": {
        "id": "9c8e7f6d-5a4b-3c2d-1e0f-987654321xyz",
        "name": "Upload Batch 1",
        "status": "completed",
        "progress_percentage": 100
    },
    "documents": [
        {
            "id": "9c8e7f6d-5a4b-3c2d-1e0f-123456789abc",
            "name": "Contract 2024.pdf",
            "type": "pdf",
            "processing_order": 1,
            "processing_status": "completed",
            "chunks_count": 25,
            "vector_ids_count": 25,
            "created_at": "2025-10-09 10:30:00"
        },
        {
            "id": "9c8e7f6d-5a4b-3c2d-1e0f-123456789def",
            "name": "Invoice Q3.pdf",
            "type": "pdf",
            "processing_order": 2,
            "processing_status": "completed",
            "chunks_count": 18,
            "vector_ids_count": 18,
            "created_at": "2025-10-09 10:32:00"
        },
        {
            "id": "9c8e7f6d-5a4b-3c2d-1e0f-123456789ghi",
            "name": "Meeting Notes.txt",
            "type": "txt",
            "processing_order": 3,
            "processing_status": "completed",
            "chunks_count": 8,
            "vector_ids_count": 8,
            "created_at": "2025-10-09 10:33:00"
        }
    ],
    "pagination": {
        "total": 10,
        "per_page": 15,
        "current_page": 1,
        "last_page": 1
    }
}
Error Response (404 Not Found)
{
    "success": false,
    "message": "Batch not found or access denied",
    "error": "No query results for model [App\\Models\\DocumentBatch]."
}

Queries

The heart of DataBrain's RAG system is the ability to query your documents using natural language and receive accurate, context-aware responses.

Query RAG
POST

Perform a RAG query against all documents in your knowledge base.

Endpoint
https://ai.goodbits.tech/api/rag/query
Request Body
Parameter Type Required Description
query String Yes The natural language query to process
Example Request
{
    "query": "What are the main points of the privacy policy document?"
}
Response (200 OK)
{
    "answer": "The main points of the privacy policy include: 1) Collection of personal data only with consent; 2) Use of data to improve services; 3) No sharing of data with third parties without authorization; 4) User's right to access and rectify data; 5) Secure storage with encryption.",
    "sources": [
        {
            "document_id": "123e4567-e89b-12d3-a456-426614174000",
            "document_name": "Privacy Policy.pdf",
            "relevance": 0.92,
            "content": "The privacy policy establishes that we collect personal data only with explicit user consent. We use this data exclusively to improve our services and user experience."
        },
        {
            "document_id": "123e4567-e89b-12d3-a456-426614174000",
            "document_name": "Privacy Policy.pdf",
            "relevance": 0.87,
            "content": "We are committed not to share personal data with third parties without express authorization. All users have the right to access, rectify and delete their data at any time."
        },
        {
            "document_id": "123e4567-e89b-12d3-a456-426614174000",
            "document_name": "Privacy Policy.pdf",
            "relevance": 0.81,
            "content": "All data is stored on secure servers with end-to-end encryption, ensuring maximum protection against leaks and unauthorized access."
        }
    ]
}
Filtered Query
POST

Perform a RAG query against specific documents in your knowledge base.

Endpoint
https://ai.goodbits.tech/api/rag/filtered-query
Request Body
Parameter Type Required Description
query String Yes The natural language query to process
document_ids Array Yes Array of document IDs to query against
Example Request
{
    "query": "What are the main points of the privacy policy document?",
    "document_ids": ["123e4567-e89b-12d3-a456-426614174000", "123e4567-e89b-12d3-a456-426614174001"]
}
Response (200 OK)
{
    "answer": "The main points of the privacy policy include: 1) Collection of personal data only with consent; 2) Use of data to improve services; 3) No sharing of data with third parties without authorization; 4) User's right to access and rectify data; 5) Secure storage with encryption.",
    "sources": [
        {
            "document_id": "123e4567-e89b-12d3-a456-426614174000",
            "document_name": "Privacy Policy.pdf",
            "relevance": 0.92,
            "content": "The privacy policy establishes that we collect personal data only with explicit user consent. We use this data exclusively to improve our services and user experience."
        },
        {
            "document_id": "123e4567-e89b-12d3-a456-426614174000",
            "document_name": "Privacy Policy.pdf",
            "relevance": 0.87,
            "content": "We are committed not to share personal data with third parties without express authorization. All users have the right to access, rectify and delete their data at any time."
        },
        {
            "document_id": "123e4567-e89b-12d3-a456-426614174000",
            "document_name": "Privacy Policy.pdf",
            "relevance": 0.81,
            "content": "All data is stored on secure servers with end-to-end encryption, ensuring maximum protection against leaks and unauthorized access."
        }
    ]
}

Training

Train your RAG model with custom data to improve response accuracy and domain-specific knowledge.

Train Model
POST

Initiate a training session with your documents to enhance the RAG model's understanding of your specific domain.

Endpoint
https://ai.goodbits.tech/api/training
Request Body
Parameter Type Required Description
document_ids Array Yes Array of document IDs to use for training
training_mode String No Training mode: "standard" or "intensive" (default: "standard")
epochs Integer No Number of training epochs (default: 3, max: 10)
Example Request
{
    "document_ids": ["123e4567-e89b-12d3-a456-426614174000", "123e4567-e89b-12d3-a456-426614174001"],
    "training_mode": "intensive",
    "epochs": 5
}
Response (202 Accepted)
{
    "message": "Training session initiated successfully",
    "training_id": "train_789e4567-e89b-12d3-a456-426614174000",
    "status": "processing",
    "estimated_completion_time": "2023-06-15T16:45:30Z",
    "documents_count": 2,
    "mode": "intensive",
    "epochs": 5
}
Training Status

You can check the training status with a GET request:

GET https://ai.goodbits.tech/api/training/{training_id}/status
Status Response (200 OK)
{
    "training_id": "train_789e4567-e89b-12d3-a456-426614174000",
    "status": "completed",
    "progress": 100,
    "started_at": "2023-06-15T14:30:00Z",
    "completed_at": "2023-06-15T16:40:25Z",
    "accuracy_improvement": 15.3,
    "credits_used": 50
}

Credits

Monitor your API usage and available credits. Each API operation consumes credits based on complexity and resource usage.

Check Credits
GET

Retrieve your current credit balance and usage statistics.

Endpoint
https://ai.goodbits.tech/api/credits
Parameters

No parameters required.

Response (200 OK)
{
    "user_id": "user_123e4567-e89b-12d3-a456-426614174000",
    "credits": {
        "available": 8750,
        "total": 10000,
        "used": 1250
    },
    "usage_statistics": {
        "current_month": {
            "queries": 450,
            "documents_uploaded": 23,
            "training_sessions": 2,
            "credits_used": 625
        },
        "last_month": {
            "queries": 380,
            "documents_uploaded": 19,
            "training_sessions": 1,
            "credits_used": 475
        }
    },
    "subscription": {
        "plan": "Professional",
        "renewal_date": "2023-07-15T00:00:00Z",
        "monthly_credit_allowance": 10000
    },
    "credit_pricing": {
        "query": 1,
        "document_upload": 5,
        "training_standard": 25,
        "training_intensive": 50
    }
}
Credit Usage
Operation Credits Cost Notes
RAG Query 1 credit Per query request
Document Upload 5 credits Per document, regardless of size
Training (Standard) 25 credits Per training session
Training (Intensive) 50 credits Per training session

Code Examples

Here are some examples of how to use the DataBrain API in different programming languages.

Upload a Document
curl -X POST \
  https://ai.goodbits.tech/api/rag/documents/upload \
  -H 'Authorization: Bearer YOUR_API_TOKEN' \
  -H 'Accept: application/json' \
  -F 'document=@/path/to/your/document.pdf'
Query RAG
curl -X POST \
  https://ai.goodbits.tech/api/rag/query \
  -H 'Authorization: Bearer YOUR_API_TOKEN' \
  -H 'Content-Type: application/json' \
  -H 'Accept: application/json' \
  -d '{
    "query": "What are the main points of the privacy policy?"
}'
Train Model
curl -X POST \
  https://ai.goodbits.tech/api/training \
  -H 'Authorization: Bearer YOUR_API_TOKEN' \
  -H 'Content-Type: application/json' \
  -H 'Accept: application/json' \
  -d '{
    "document_ids": ["123e4567-e89b-12d3-a456-426614174000"],
    "training_mode": "standard",
    "epochs": 3
}'
Check Credits
curl -X GET \
  https://ai.goodbits.tech/api/credits \
  -H 'Authorization: Bearer YOUR_API_TOKEN' \
  -H 'Accept: application/json'
Upload a Document
<?php
$curl = curl_init();

curl_setopt_array($curl, [
  CURLOPT_URL => "https://ai.goodbits.tech/api/rag/documents/upload",
  CURLOPT_RETURNTRANSFER => true,
  CURLOPT_CUSTOMREQUEST => "POST",
  CURLOPT_POSTFIELDS => [
    'document' => new CURLFILE('/path/to/your/document.pdf')
  ],
  CURLOPT_HTTPHEADER => [
    "Authorization: Bearer YOUR_API_TOKEN",
    "Accept: application/json"
  ],
]);

$response = curl_exec($curl);
$err = curl_error($curl);

curl_close($curl);

if ($err) {
  echo "cURL Error #:" . $err;
} else {
  echo $response;
}
Query RAG
<?php
$curl = curl_init();

curl_setopt_array($curl, [
  CURLOPT_URL => "https://ai.goodbits.tech/api/rag/query",
  CURLOPT_RETURNTRANSFER => true,
  CURLOPT_CUSTOMREQUEST => "POST",
  CURLOPT_POSTFIELDS => json_encode([
    'query' => 'What are the main points of the privacy policy?'
  ]),
  CURLOPT_HTTPHEADER => [
    "Authorization: Bearer YOUR_API_TOKEN",
    "Content-Type: application/json",
    "Accept: application/json"
  ],
]);

$response = curl_exec($curl);
$err = curl_error($curl);

curl_close($curl);

if ($err) {
  echo "cURL Error #:" . $err;
} else {
  echo $response;
}
Train Model
<?php
$curl = curl_init();

curl_setopt_array($curl, [
  CURLOPT_URL => "https://ai.goodbits.tech/api/training",
  CURLOPT_RETURNTRANSFER => true,
  CURLOPT_CUSTOMREQUEST => "POST",
  CURLOPT_POSTFIELDS => json_encode([
    'document_ids' => ['123e4567-e89b-12d3-a456-426614174000'],
    'training_mode' => 'standard',
    'epochs' => 3
  ]),
  CURLOPT_HTTPHEADER => [
    "Authorization: Bearer YOUR_API_TOKEN",
    "Content-Type: application/json",
    "Accept: application/json"
  ],
]);

$response = curl_exec($curl);
$err = curl_error($curl);

curl_close($curl);

if ($err) {
  echo "cURL Error #:" . $err;
} else {
  echo $response;
}
Check Credits
<?php
$curl = curl_init();

curl_setopt_array($curl, [
  CURLOPT_URL => "https://ai.goodbits.tech/api/credits",
  CURLOPT_RETURNTRANSFER => true,
  CURLOPT_CUSTOMREQUEST => "GET",
  CURLOPT_HTTPHEADER => [
    "Authorization: Bearer YOUR_API_TOKEN",
    "Accept: application/json"
  ],
]);

$response = curl_exec($curl);
$err = curl_error($curl);

curl_close($curl);

if ($err) {
  echo "cURL Error #:" . $err;
} else {
  echo $response;
}
Upload a Document
import requests

url = "https://ai.goodbits.tech/api/rag/documents/upload"

headers = {
    'Authorization': 'Bearer YOUR_API_TOKEN',
    'Accept': 'application/json'
}

files = {
    'document': open('/path/to/your/document.pdf', 'rb')
}

response = requests.post(url, headers=headers, files=files)

print(response.json())
Query RAG
import requests
import json

url = "https://ai.goodbits.tech/api/rag/query"

headers = {
    'Authorization': 'Bearer YOUR_API_TOKEN',
    'Content-Type': 'application/json',
    'Accept': 'application/json'
}

payload = {
    'query': 'What are the main points of the privacy policy?'
}

response = requests.post(url, headers=headers, data=json.dumps(payload))

print(response.json())
Train Model
import requests
import json

url = "https://ai.goodbits.tech/api/training"

headers = {
    'Authorization': 'Bearer YOUR_API_TOKEN',
    'Content-Type': 'application/json',
    'Accept': 'application/json'
}

payload = {
    'document_ids': ['123e4567-e89b-12d3-a456-426614174000'],
    'training_mode': 'standard',
    'epochs': 3
}

response = requests.post(url, headers=headers, data=json.dumps(payload))

print(response.json())
Check Credits
import requests

url = "https://ai.goodbits.tech/api/credits"

headers = {
    'Authorization': 'Bearer YOUR_API_TOKEN',
    'Accept': 'application/json'
}

response = requests.get(url, headers=headers)

print(response.json())
Upload a Document
const fs = require('fs');
const axios = require('axios');
const FormData = require('form-data');

async function uploadDocument() {
  const formData = new FormData();
  formData.append('document', fs.createReadStream('/path/to/your/document.pdf'));

  try {
    const response = await axios.post('https://ai.goodbits.tech/api/rag/documents/upload', formData, {
      headers: {
        ...formData.getHeaders(),
        'Authorization': 'Bearer YOUR_API_TOKEN',
        'Accept': 'application/json'
      }
    });
    
    console.log(response.data);
  } catch (error) {
    console.error(error);
  }
}

uploadDocument();
Query RAG
const axios = require('axios');

async function queryRag() {
  try {
    const response = await axios.post('https://ai.goodbits.tech/api/rag/query', {
      query: 'What are the main points of the privacy policy?'
    }, {
      headers: {
        'Authorization': 'Bearer YOUR_API_TOKEN',
        'Content-Type': 'application/json',
        'Accept': 'application/json'
      }
    });
    
    console.log(response.data);
  } catch (error) {
    console.error(error);
  }
}

queryRag();
Train Model
const axios = require('axios');

async function trainModel() {
  try {
    const response = await axios.post('https://ai.goodbits.tech/api/training', {
      document_ids: ['123e4567-e89b-12d3-a456-426614174000'],
      training_mode: 'standard',
      epochs: 3
    }, {
      headers: {
        'Authorization': 'Bearer YOUR_API_TOKEN',
        'Content-Type': 'application/json',
        'Accept': 'application/json'
      }
    });
    
    console.log(response.data);
  } catch (error) {
    console.error(error);
  }
}

trainModel();
Check Credits
const axios = require('axios');

async function checkCredits() {
  try {
    const response = await axios.get('https://ai.goodbits.tech/api/credits', {
      headers: {
        'Authorization': 'Bearer YOUR_API_TOKEN',
        'Accept': 'application/json'
      }
    });
    
    console.log(response.data);
  } catch (error) {
    console.error(error);
  }
}

checkCredits();

Need Help With Integration?

Our team of experts is ready to assist you with implementing DataBrain's RAG API into your applications. Contact us for personalized support.

Contact Support Team
Documentation Icon

Comprehensive Documentation

Explore our in-depth guides and tutorials to master DataBrain's RAG capabilities.

Browse Guides
SDK Icon

Client Libraries

Use our official SDKs for popular programming languages to accelerate integration.

View SDKs
Community Icon

Developer Community

Join our community forum to share insights and get help from fellow developers.

Join Community

Ready to enhance your applications with DataBrain RAG?

Start with our free trial and experience the power of advanced RAG technology.